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We recently carried out an extensive comparison of the performance of state-of-the-art sparse direct

solvers for the numerical solution of symmetric linear systems of equations. Some of these solvers

were written primarily as research codes while others have been developed for commercial use.

Our experiences of using the different packages to solve a wide range of problems arising from

real applications were mixed. In this paper, we highlight some of these experiences with the aim

of providing advice to both software developers and users of sparse direct solvers. We discuss key

features that a direct solver should offer and conclude that while performance is an essential factor

to consider when choosing a code, there are other features that a user should also consider looking

for that vary significantly between packages.
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1. INTRODUCTION

For more than three decades, there has been considerable interest in the de-
velopment of numerical algorithms and their efficient implementation for the
solution of large sparse linear systems of equations Ax = b. The algorithms
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may be grouped into two broad categories: direct methods and iterative meth-
ods (in recent years, hybrid methods that seek to combine direct and iterative
methods have also been proposed). The most widely used direct methods are
variants of Gaussian elimination and involve the explicit factorization of the
system matrix A (or, more usually, a permutation of A) into a product of lower
and upper triangular matrices L and U . In the symmetric case, U = DLT ,
where D is a block diagonal matrix with 1 × 1 and 2 × 2 blocks. Forward elim-
ination followed by backward substitution completes the solution process for
each given right-hand side b.

The main advantages of direct methods are their generality and robustness.
For some “tough” linear systems that arise in a number of application areas
they are currently the only feasible methods. For other problems, finding
and computing a good preconditioner for use with an iterative method can
be computationally more expensive than using a direct method. However, a
significant weakness is that the matrix factors are often significantly denser
than the original matrix and, for large problems such as those that arise from
discretisations of three-dimensional partial differential equations, insufficient
memory for both forming and then storing the factors can prevent the use of
direct methods. As the size of the problems users want to solve has increased, so
too has interest in iterative methods. But, because of the lack of robustness and
suitability of iterative methods as general purpose solvers, considerable effort
has also gone into developing more efficient implementations of direct methods.
During the last decade many new algorithms and a number of new software
packages that implement direct methods have been developed. In many of our
own applications we need to solve symmetric systems; the potentially bewilder-
ing choice of suitable solvers led us to carry out a detailed study of serial sparse
direct symmetric solvers. The largest and most varied collection of sparse direct
serial solvers is that contained within the mathematical software library HSL
[2004]. In an initial study, Gould and Scott compared the performance of the
symmetric HSL solvers on a significant set of large test examples taken from
a wide range of different application areas [Gould and Scott 2003, 2004]. This
was subsequently extended to all symmetric direct solvers that were available
to us. These solvers are listed in Table I. Further details of the packages
together with references are given in Gould et al. [2007]. Although a number of
the packages have parallel versions (and may even have been written primarily
as parallel codes), we considered only serial codes and serial versions of parallel
solvers.

Our study was based on running each of the solvers on a test set of 88
positive-definite problems and 61 numerically indefinite problems of order
at least 10, 000. A full list of the problems together with a brief description
of each is given in Gould et al. [2005]. They are all available from ftp://ftp.
numerical.rl.ac.uk/pub/matrices/symmetric. Performance profiles (see Dolan
and Moré [2002]) were used to evaluate and compare the performance of the
solvers on the test set. The statistics used were:

—The CPU times required to perform the different phases of the direct
method.
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Table I. Packages Tested in Our Study of Sparse Symmetric Solvers (∗indicates source

code is supplied.)

Code Authors/contact

BCSLIB-EXT The Boeing Company

www.boeing.com/phantom/bcslib-ext/

CHOLMOD∗ T. Davis

www.cise.ufl.edu/research/sparse/cholmod/

HSL codes: I.S. Duff, J.K. Reid, J.A. Scott

MA27∗, MA47∗, MA55∗, www.cse.clrc.ac.uk/nag/hsl and

MA57∗, MA62∗, MA67∗ www.hyprotech.com/hsl/hslnav/default.htm

MUMPS∗ P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, J. Koster,

A. Guermouche and S. Parlet

www.enseeiht.fr/lima/apo/MUMPS/

Oblio∗ F. Dobrian and A. Pothen

dobrian@cs.odu.edu or pothen@cs.odu.edu

PARDISO O. Schenk and K. Gärtner

www.computational.unibas.ch/cs/scicomp/software/pardiso

SPOOLES∗ C. Ashcraft and R. Grimes

www.netlib.org/linalg/spooles/spooles.2.2.html

SPRSBLKLLT∗ E.G. Ng and B.W. Peyton

EGNg@lbl.gov

TAUCS∗ S. Toledo

www.cs.tau.ac.il/∼stoledo/taucs/

UMFPACK∗ T. Davis

www.cise.ufl.edu/research/sparse/umfpack/

WSMP A. Gupta, IBM

www-users.cs.umn.edu/∼agupta/wsmp.html and

www.alphaworks.ibm.com/tech/wsmp

—The number of nonzero entries in the computed matrix factor.

—The total memory used by the solver.

Full details of our findings in terms of these statistics are given in Gould et al.
[2005, 2007].

Testing the solvers involved reading the documentation, writing drivers for
them, and, to ensure we were being fair and using the codes correctly, liais-
ing with the software developers. Our experiences were mixed. Some solvers
were well documented and tested, and their use clearly explained, making them
straightforward to install and run. Other software developers had paid less at-
tention to the whole design and testing processes so that their codes were harder
to use. The main aim of this article is to highlight some of our experiences in a
way that will be helpful in the future to both software developers and users of
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sparse direct solvers. We consider a number of key aspects of the development
of sparse solvers including documentation, the design of the user interface, and
the flexibility and ease of use. We are anxious not to simply present a snapshot
of the current field, and so our intention is not to exhaustively discuss each of
the packages we tested with respect to each of these aspects but rather to use
our experiences and knowledge of the codes to illustrate the discussion. Our
aim is to be objective and to base our comments on our experiences both as
software developers and as software users. While we want to avoid subjective
comparisons, it is not always possible to make comparisons quantitatively. For
instance, it is difficult to measure such things as software engineering quality,
other than through our own experiences (particularly since the solvers are writ-
ten using different languages). We recognize that, as we have ourselves worked
on the design and development of sparse direct solvers, we are neither naive
nor typical users but, over many years, we have had contact with users of our
software from a variety of different backgrounds and have benefited from their
comments and feedback.

The solvers in our study were developed for different reasons. Some were
written for commercial use while others are primarily research codes, perhaps
partly the result of the work of graduate students. Many of the solvers are
still being actively developed; indeed, since we embarked on this work, new
packages have appeared and a number of the codes have been significantly
improved, partly as a result of new research and also as a result of feedback from
us. Of course, some of our comments will inevitably become out-of-date as new
releases of the solvers become available. We would thus advise potential users
of a direct solver to check current releases against the criteria that we discuss.

We end this introductory section by explaining how to obtain the packages
listed in Table I. Currently, Oblio [Dobrian et al. 2000] and SPRSBLKLLT [Gilbert
et al. 1994] are research codes that are available only by contacting the authors
directly. Some of the other packages can be downloaded straight from the Web
page given. This is the case for CHOLMOD [Davis et al. 2006], SPOOLES [Ashcraft
and Grimes 1999], TAUCS [Rotkin and Toledo 2004] and UMFPACK [Davis 2003].
A 90-day evaluation license for WSMP [Gupta 2000] can be obtained from the
Web page. A potential user of MUMPS [Amestoy et al. 2001] needs to complete a
short form on the Web page; the software is then sent via email. To use PARDISO
[Schenk and Gärtner 2004], a slightly more detailed online form must be filled
in before a license is issued and access given to download the compiled code.
MA27 [Duff and Reid 1983] and MA47 [Duff and Reid 1996] are part of the HSL
Archive and as such, are freely available to all for noncommercial use. Access is
via a short-lived user name and password that are sent on completing a short
form online. The remaining HSL codes, that is, MA55 [HSL 2004], MA57 [Duff
2004], MA62 [Duff and Scott 1999], and MA67 [HSL 2004], require the user to
obtain a licence. The software distributors must be contacted for this. Use of
BCSLIB-EXT [Ashcraft et al. 1998] requires a commercial licence; contact details
are on the given Web page. With the exception of BCSLIB-EXT, PARDISO, and
WSMP, source code is provided.

The remainder of this article is organized as follows. In Section 2, we dis-
cuss the importance of good user documentation and what the documentation
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should provide. In Section 3, we consider the choice of language for sparse di-
rect solvers. The design of the user interface is discussed in Section 4. Section
5 looks at how the solver can be designed to offer the user flexibility and to
give the user control over the action. In Section 6, we consider how things can
go wrong when using a direct solver and discuss how the solver can be writ-
ten to cope with potential problems. Section 7 discusses installation issues.
Throughout we use the software packages listed above to illustrate the differ-
ent approaches that the software writers have adopted and, where appropriate,
we highlight good practice. This leads us, in Section 8, to summarize the fea-
tures of an ideal sparse direct solver. We end with some concluding remarks in
Section 9.

For further details of sparse direct methods, we recommend Duff et al. [1986]
and Dongarra et al. [1998], and the references therein.

2. DOCUMENTATION

A potential user’s first in-depth contact with the software is likely to be through
the accompanying documentation. Today this includes Web pages. To be attrac-
tive to readers, it is essential that the documentation is clear, concise, and well
written. Otherwise, only the most enthusiastic or determined user is likely to
go on and use the software. There is clearly no single “right” way to present
the documentation but the aims of the writer should always be essentially the
same.

2.1 User Documentation

Writing good user documentation is an integral part of the design process. The
complexity of the documentation will, in part, depend upon the complexity of
the package and the range of options that it offers. The documentation should
always start with a brief and clear statement of what, in broad terms, the pack-
age is designed to do. The main body of the documentation must then explain
how to use the package. This should be straightforward to understand, avoid-
ing technical terms and details of the underlying algorithm because the reader
may not be an expert on solving sparse systems. The input required from the
user and the output that will be generated must be clearly described, with full
details of any changes that the code may make to the user’s data. Readers will
not want to plow through pages and pages before being able to try out the code
for themselves, at least on a simple problem. It is generally very helpful if the
calling sequence for the package is illustrated through the inclusion of at least
one simple example, which should be supplied complete with the input data and
expected output. In our experience, if it is well written and fully commented,
this kind of example provides a template that is invaluable, particularly for
first-time users of a package. HSL documentation always includes at least one
example of how to use the package. Other packages that we tested that include
complete examples within the user documentation are BCSEXT-LIB, CHOLMOD,
MUMPS, PARDISO, UMFPACK, and WSMP. Although SPOOLES, SPRSBLKLLT, Oblio, and
TAUCS do provide source code for undocumented sample drivers, the advan-
tage of having complete examples included within the user documentation is
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that it forces the author to really think about the example and to make it
not only useful but also as simple and as easy to follow as possible for new
users.

For more advanced users, full details of the capabilities of the package and
the options it offers need to be given; this may involve the use of technical lan-
guage. References should be provided to available research reports and papers
that describe the package and/or the algorithm used, together with numerical
results. In our opinion, all sparse direct solvers are sufficiently complicated
to require an accompanying technical report that documents the algorithms
that have been used together with important or novel implementation details.
This should enable advanced users to select suitable control parameters (see
Section 5) and to understand the ways in which the current package differs
from other packages. For software developers, explaining their code in a re-
port is a useful exercise; a careful review frequently leads to modifications and
improvements.

The documentation should include details of copyright, conditions of use, and
licensing. It is also helpful to provide details of who the authors are, the date
the software was written, and the version number(s) of the package that the
documentation relates to. The documentation should provide potential users
with clear instructions on how to install the software. We discuss this further
in Section 7.

The documentation supplied with the solvers included in our study varied
considerably. At one extreme, SPRSBLKLLT was supplied to us by the authors as
source code and the only items of documentation were a short “readme” file,
a sample driver, and the comments included at the start of the source. For an
experienced Fortran 77 programmer, these were easy to read and, as limited op-
tions are available, allowed the package to be used relatively quickly. A research
paper provides details of the algorithm. Oblio currently does not include user
documentation, but a number of published papers are available. At the other
extreme are BCSLIB-EXT and SPOOLES. The user’s guide that accompanies the
BCSLIB-EXT library is a hefty volume, with more than 150 pages describing the
use of the subprograms for the solution of sparse linear systems. As signifi-
cant portions of this need to be read before it is possible to use the package
with any confidence, this is likely to be daunting for a novice and means that
a considerable amount of time and effort must be invested in learning how to
use the package. However, as already mentioned, the inclusion of a set of ex-
amples to illustrate the use of the software is helpful. SPOOLES has the longest
and probably the most comprehensive (but not the most readable) documen-
tation, with a complete reference manual of over 400 pages (a more accessible
58-page document is also available that is intended to provide a more gentle
introduction to using the code). Some packages, including PARDISO, come with
a useful reference or summary sheet, while CHOLMOD and UMFPACK offer both a
helpful and clear short introductory guide (which is sufficient to get going with
using the code) together with a much longer detailed user manual. Subdividing
the documentation into different sections with clear headings also enables easy
reference. This is done well by a number of packages, notably MUMPS, the HSL
codes, and UMFPACK.
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2.2 Web Pages

With the rapid development and wide usage of the World Wide Web, the avail-
ability of Web pages for a software package is potentially an extremely useful
resource for users while for software developers it offers unique opportunities
to raise the profile of their codes and a relatively straightforward way of dis-
tributing their packages globally. A discussion of the principles of designing
effective Web pages is beyond the scope of this article but clearly a well de-
signed and developed Web page for a software package should contain (or give
pointers to) all the details and information that were previously available only
as part of the printed user documentation. This will include user guides and
additional papers or reports, plus details of how to obtain the software, version
history, licensing conditions, copyright, contact details, and so on. With the ex-
ception of Oblio and SPRSBLKLLT, all the software packages we tested have an
associated Web page of some sort (see Table I). As already noted, some of these
allow the user to immediately download the most recent code and up-to-date
documentation.

A significant advantage of having access to either a PDF or html version
of the documentation that we appreciated while testing the packages is the
ability to search with ease for a key word or phrase. Where the user interface is
complicated, this can be much easier that using the printed or postscript version
of the documentation. CHOLMOD, MUMPS, and UMFPACK are examples of packages
that include freely available pdf versions of their user documentation on their
Web pages.

Some Web pages, including those for MUMPS, have a “frequently asked ques-
tions” section. These can be helpful but must not be an excuse for failing to offer
fully comprehensive and complete user documentation.

3. LANGUAGE

The packages in our study are written using a number of languages: Fortran 77,
Fortran 90, C, and C++. Many authors choose a particular language because
they are familiar with it and it is what they always use. HSL, for example,
has always been a Fortran library, so its packages are written in Fortran 77
or, more recently, Fortran 90 or 95. Others may choose a language because
they would like to take advantage of some of the features that it offers but
that are not available in another language. For example, a developer may want
to exploit the high level of support for object oriented programming offered
within C++. This is the approach taken by Oblio. The developer may also wish
to avoid Fortran 77 because its lack of dynamic memory allocation makes it
extremely difficult to write a user-friendly sparse direct solver, particularly one
that incorporates numerical pivoting so that the data structures required by
the matrix factors cannot, in general, be accurately predicted using the sparsity
pattern alone. Of course, since the solvers are intended for others to use, it is
always important before choosing the language to consider what is likely to be
most convenient for potential users.

Our benchmarking experience suggested that, for direct solvers, there is lit-
tle to choose among Fortran, C, and C++ in terms of performance—efficient code

ACM Transactions on Mathematical Software, Vol. 33, No. 3, Article 18, Publication date: August 2007.



8 • J. A. Scott and A. Hu

can be written in each of these languages. With the exception of SPOOLES, the
performance of all the solvers in our study relies heavily on the use of Level 3
BLAS (Basic Linear Alegra Subroutines); highly optimized versions need to be
used for good performance. Of the main languages, C++ offers the most support
for object oriented programming, which is attractive as well as convenient for
some developers and users. Fortran 90/95 also offers some support for object
oriented programming. On the other hand, it is also possible to write programs
with clean and well-defined “objects” using C; a good example of this is UMFPACK.
Some developers find it convenient to use a combination of languages (for ex-
ample, both Fortran and C are used in the source codes of WSMP and PARDISO).
Others choose to produce more than one version. For instance, following de-
mand from users, there are both Fortran 77 and Fortran 90 versions of MA57.

Another consideration when choosing language is portability. C and For-
tran 77 are arguably the most portable, with compilers almost always freely
available on all platforms. Although good quality free Fortran 90/95 compilers
were slow to appear, g95 is now available so that access to a good Fortran 95
compiler (at least on serial machines) is also now widespread.

Because a user’s program that calls a sparse solver may not be in the same
language as the solver, it can be helpful if the developer provides interfaces
in other languages. For example, CHOLMOD provides an interface for MATLAB,
and UMFPACK provides interfaces for Fortran 77 and MATLAB, while MUMPS and
PARDISO can be called from C programs.

With both Intel and AMD having 64-bit processors available, and the recent
release of 64-bit editions of Windows XP and Windows Server 2003, users are
increasingly interested in software that makes full use of 64-bit architecture.
PARDISO and UMFPACK offer full support for 32-bit and 64-bit architectures.

4. DESIGN OF THE USER INTERFACE

A solver should be designed with the user’s needs in mind. The requirements of
different users vary and they determine, to some extent, the design of the inter-
face. If the software is to be general purpose and well used, the interface needs
to be straightforward, with the potential for the user making errors limited as
far as possible. If the solver is intended to be used to solve many different types
of problems, the interface also needs to be flexible. In this section, we discuss
how the sparse matrix data is passed to the solver, comment on different ap-
proaches to the design of the user interface, and look at information computed
by the solver that the user may need access to.

4.1 Matrix Input

One of the key decisions that the software developer must make when designing
the user interface is how the user will supply the (nonzero) entries of the system
matrix A. The aim should be for this to be simple for the user (so that the chances
of errors are minimised) as well as efficient in terms of both time and memory.
The developer clearly has a number of options available. These include:

(a) inputting all the entries on a single call using real and integer arrays. We
refer to this as standard input.
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(b) inputting the entries of A one row at a time. This is called reverse commu-
nication and can be generalized to allow a block of rows to be input on a
single call. In the case of element problems where A is held as a sum of
small dense element matrices, the elements are input one at a time.

(c) requiring the user to put the matrix data into one or more files that can be
read by the software package as they are required.

There can be advantages in making the interface flexible by offering a choice
of input methods because the form in which the matrix data arises depends
very much on the application and origins of the problem. For the user, a po-
tential downside to having a choice is, of course, more complicated and lengthy
documentation and possibly a greater chance of making input errors. For the
software developer, more options means more code to maintain and to test, again
with a greater potential for errors. The packages in our survey of symmetric
solvers that offer more than one of the above input methods are BCSLIB-EXT
(it offers (a) and (b)), and CHOLMOD (it offers (a) and (c)), while TAUCS is the
only solver that uses files to input the matrix. The latter offers a number
of different formats, including coordinate and compressed sparse column for-
mats. Alternatively, a user may access the TAUCS matrix structure to input the
matrix.

A small number of codes in our study have reverse communication inter-
faces, namely, the band solver MA55, the frontal code MA62 (both from the HSL
library), and BCSLIB-EXT. The main advantage of reverse communication is that,
at each stage, the user needs to generate and hold in main memory only a small
part of the system matrix. This may be important, for example, for large-scale
three-dimensional finite-element applications for which the additional memory
required if all the elements are generated and stored in memory prior to using
the package may be prohibitive.

The HSL code MA55 requires the lower triangular part of the matrix to be
entered a block of rows at a time. The user can choose to specify the rows one
at a time, but the documentation notes that specifying more than one at once
reduces procedure call overheads and the overheads of several statements that
are executed once for each call. MA62 is for finite-element problems only and
requires the user to enter the upper triangular parts of the element matrices
one at a time. BCSLIB-EXT has a number of different reverse communication
options. The matrix can be entered a single entry at a time, by adding a vector
of entries on each call, or by entering the element matrices one by one. A key
difference between the two HSL codes and BCSLIB-EXT is that the former have
reverse communication interfaces for both the analyze and factorize phases,
whereas for the latter the user enters the whole of A using a series of calls prior
to the analyze phase and the package then accumulates the system matrix and
optionally holds it out of core.

Many users initially find reverse communication harder to use than supply-
ing the matrix data in a single call because the documentation tends to be longer
and more complicated. Moreover, there is an overhead for making repeated calls
to the input routine. Thus it can be advantageous to include standard input as
an option along with reverse communication.
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If standard input is used, the software designer still has a number of options.

(1) Coordinate format (COORD), that is, for each nonzero entry in A, the row
index i, the column index j , and the value aij are entered. This requires
two integer arrays and one real array of length nz, where nz is the number
of nonzero entries in A. COORD format is used by MA27, MA47, MA57, MA67,
and SPOOLES, and is one of the options offered by BCSLIB-EXT.

(2) Compressed sparse column format (CSC). In this case, the entries of column
1 must proceed those in column 2, and so on. This requires an integer array
and a real array of length nz plus an integer array of length n+ 1 that holds
“pointers” to the first entry in each column. CSC format is used by MUMPS,
Oblio, PARDISO, SPRSBLKLLT, UMFPACK, and WSMP and is offered by BCSLIB-EXT.

(3) Compressed sparse row format (CSR). This is analogous to the CSC format,
with columns replaced by rows. In the symmetric case, entering the lower
triangle of A in CSC format is equivalent to entering the upper triangle in
CSR format.

(4) For element applications where A is held as a sum of small dense matrices,
element format (ELMNT) can be used. In this case, the entries for the dense
matrix corresponding to element 1 proceed those corresponding to element
2, and so on. This requires an integer array to hold the lists of integers
in each of the elements and an integer array of length nelt + 1 that holds
“pointers” to the position of the start of the integer list for each element. A
real array must hold the corresponding element entries. MUMPS offers entry
using the ELMNT format.

For symmetric matrices, with the exception of SPRSBLKLLT, the symmetric
solvers in our study require only the entries in the upper (or lower) trian-
gular part of A (in the element case, only the upper triangular part of each
element is needed). Coordinate format is perhaps the simplest input format for
inexperienced users, especially those who are not familiar with sparse matrix
data formats. The disadvantage of COORD compared with CSC (or CSR) is the
need for two integer arrays of length nz, instead of one. Because of the sav-
ings in storage, matrices in sparse test sets such as the Harwell-Boeing Sparse
Matrix Collection (www.cse.clrc.ac.uk/nag/hb/hb.shtml) and the University of
Florida Sparse Matrix Collection (www.cise.ufl.edu/research/sparse/matrices/)
are stored in CSC format. Thus a software developer who offers CSC input will
find it straightforward to test his or her package on these test problems.

Converting from CSC (or CSR) format to COORD format is very straightfor-
ward. The converse is not so trivial. UMFPACK has a CSC interface, but it provides
a useful utility code to convert from COORD to CSC; a similar code is available
on the WSMP Web page and HSL includes a number of routines for manipulating
the entries of a matrix, including ordering from COORD to CSC. CHOLMOD also
includes utilities to convert between the data types that it uses for coordinate
and compressed row formats. Some packages that use CSC (or CSR) format
(including PARDISO and UMFPACK) require that the entries in a given column (or
row) are supplied in ascending order. The extra manipulation the user has to
perform before calling the solver may make the job of the software writer easier
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(and it may lead to some savings in the computational time and memory re-
quirements) but, unless a facility for reordering in this way is provided (it is
provided by UMFPACK and within HSL), it may deter users who are unfamiliar
with working with large sparse matrices. It can also lead to the user making
mistakes that go undetected.

A number of packages (Oblio, PARDISO, SPOOLES, and WSMP) require the di-
agonal of A to be present (so that any zero diagonal entries must be explicitly
entered). Again, this requires the user to check the data and, if necessary, mod-
ify it to add any missing diagonal entries. If CSC (or CSR) format is used, this
involves non-trivial manipulation of sparse data structures.

4.2 User Interface

Sparse direct methods solve systems of linear equations by factorizing the co-
efficient matrix A, generally employing graph models to try and minimize both
the storage needed and work performed. Sparse direct solvers have a number of
distinct phases. Although the exact subdivision depends on the algorithm and
software being used, a common subdivision is given by:

(1) An ordering phase that exploits structure.

(2) An analyze phase (or symbolic factorization) that analyzes the matrix struc-
ture to (optionally) determine a pivot sequence and data structures for an
efficient factorization.

(3) A factorization phase that uses the pivot sequence to factorize the matrix.

(4) A solve phase that performs forward elimination followed by back sub-
stitution using the stored factors. The solve phase may include iterative
refinement.

When designing the user interface for each of these phases, it is good pro-
gramming practice to hide details that are implementation specific from the
user, using object oriented programming techniques. For example, in UMFPACK
the call to its symbolic factorization routine umfpack symbolic returns an object
symbolic in the form of a C pointer, instead of using arrays to hold details of the
matrix ordering and pivot sequence. The symbolic object must be passed to the
numerical factorization routine, and finally deleted using another routine. This
sort of approach (which can also be achieved within C++ and Fortran 90/95) lim-
its the number of arguments that the user has to understand and pass between
subroutines, reducing the scope for errors and allowing the software developer
the possibility of changing internal details in the future without causing prob-
lems for the user’s code. For more experienced users, a means of accessing these
objects should be provided, and a utility function that can convert these objects
to an easy-to-use standard format would be helpful. CHOLMOD and UMFPACK pro-
vide such a function.

Another way of trying to reduce the likelihood of a user introducing errors
between subroutine calls is to have a single callable user routine. MUMPS adopts
this approach and uses a parameter JOB to control the main action. By setting
this parameter to different values, the user can call a single phase of the solver
or can execute several phases (for example, analyze then factorize and then
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solve) with one call. PARDISO and WSMP also have a single callable routine. Some
users find this is simpler to use than calling different subroutines with different
arguments for the various solver phases but, provided the number of callable
subroutines is modest, choosing which approach is best is largely a matter of
personal preference.

The HSL routines, in general, have four main user-callable subroutines: an ini-
tialization routine that set defaults for the control parameters (see Section 5.5),
one for the analyze phase (incorporating the ordering), and one each for the
factorization and solve phases. MA57 offers additional routines, for example, for
performing iterative refinement, while MA62 has a routine the user must call
before the factorization to set up the direct access files if the user wishes to hold
the matrix factor out of core.

BCSLIB-EXT has many subroutines the user can call (including initialization
routines, a number of routines for entering the matrix sparsity pattern and
numerical entries, reordering, performing the symbolic factorization, the nu-
merical factorization, and the forward and back substitutions). They are all
fully documented, but, as already noted, with so many subroutines to under-
stand and to call, our experience was that a lot of effort had to be invested before
it was possible to start using the package. The TAUCS package also contains a
large number of routines because the package has been designed so that the
user must call different routines if, for example, the out-of-core version is re-
quired. While having separate routines may simplify development and testing
for the developer, it can make the user’s job more complicated if experiments
with both out-of-core and in-core codes are required.

UMFPACK is another example of a package with many routines; it has 32 user-
callable routines. Of these, five are so-called primary routines, which are docu-
mented in the quick start user guide and are all a beginner needs to get going
with the package. The other 27 routines are available to provide additional fa-
cilities for more experienced users. They include matrix manipulation routines,
printing routines and routines for obtaining the contents of arrays not other-
wise available to the user. The simplest interface of all and an example of a
single call routine is the MATLAB interface to UMFPACK (Version 4.3 is a built-
in routine for lu, backslash, and forward slash in MATLAB 7.1, and CHOLMOD is
built into MATLAB 7.2 for symmetric positive definite and Hermitian systems).

4.3 Information Returned to the User

A well designed solver will provide the user with information, both on success-
ful completion and in the event of an error (see Section 6). After the symbolic
factorization, information should be returned to the user on the estimated num-
ber of entries in the factor, the estimated flop count, and the estimated integer
and real memory that will be required for the factorization. These estimates
should help the user to decide whether to try proceed with the factorization
and, for solvers in Fortran 77, give the user an idea of how to appropriately
allocate workarrays and arrays for holding the factors.

Once the factorization is complete, the user should have details of the number
of entries in the factors, the flop count, and the amount of real and integer
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memory used. For those wishing to solve a series of problems, it can also be
useful to provide information on the minimum memory that would be required
if the factorization were to be repeated.

Other information that is provided by one or more of the solvers we tested
and that we think is useful includes the number of matrix entries that were
ignored (because they were out-of-range), the number that were duplicates, the
log and sign of the determinant of the matrix, the computed inertia, the norm
of the matrix and its condition number, information on the pivots used (such as
the number of 2×2 pivots), and the number of steps of iterative refinement that
have been performed. For frontal and multifrontal codes it is also useful to know
the maximum frontsize and, more generally, for multifrontal codes, details of
the elimination tree (such as the number of nodes in the tree). Clearly, some of
this information will only be of interest to experts.

Many solvers use “information arrays” to return information to the user.
Some have a single array, others use two (one for real and the other for integer
information). These arrays are output arrays only, that is, they are not set by the
user. Solvers using these arrays include the HSL codes, MUMPS and UMFPACK (the
latter provides a routine for printing the information array). We found PARDISO
and WSMP less convenient since their array IPARM contains a mix of input and
output parameters; some of the components must be set on entry and others
are only set on exit. In Fortran 90/95 derived types can be used, which can be
more user-friendly as it allows meaningful names to be used in place of entries
in an array. The same can be done in C and C++. CHOLMOD, for example, uses this
approach. However, printing a simple list of the information generated is then
less straightforward, and we would recommend providing a separate printing
routine to do this.

5. FLEXIBILITY AND THE USE OF PARAMETERS

Each of the sparse solvers used in our numerical experiments offers the user a
number of options. These provide flexibility and, to some extent, allow the user
to choose algorithms and control the action. In this section we discuss some of
these options.

5.1 Ordering Choices

One of the keys to the success of any sparse direct solver is the ordering algo-
rithms that it offers. There are a number of different approaches to the problem
of obtaining a good pivot sequence and no single method is universally the best.
As a result, a good solver should have access to a choice of orderings. To ensure
minimum in-core storage requirements, ordering algorithms are not integrated
within the out-of-core HSL codes MA55 and MA62 that have a reverse commu-
nication interface. The user must preorder the rows or elements; additional
routines are provided within HSL that can be used for this. The other solvers
in our study incorporate a range of ordering options. Some codes (such as MA27,
MA47, and SPRSBLKLLT) have only one ordering available, while others (including
MA57, MUMPS, and TAUCS) offer many different options (see Gould et al. [2005] for
further details). Recently, there have been attempts by software developers to

ACM Transactions on Mathematical Software, Vol. 33, No. 3, Article 18, Publication date: August 2007.



14 • J. A. Scott and A. Hu

automatically choose within the code which ordering is likely to be the best. By
default, both CHOLMOD and MA57 analyze the sparsity of the input matrix A to
select either an approximate minimum degree and a nested dissection ordering.

With the exception of MA67, all the codes in our study allow the user to supply
his or her own ordering. However, to do this for SPRSBLKLLT, the user must
preorder the matrix before entry to the solver; the other packages perform any
necessary permutations on the input matrix using the supplied ordering. MA67
is somewhat different in that it is an analyze-factorize code, that is, it combines
the symbolic and numerical factorization phases. Test results have shown that
this can work well on highly ill-conditioned indefinite problems, but it may be
unsuitable in the situation where a user wants to solve a sequence of sparse
linear systems where the coefficient matrices change but their sparsity pattern
remains fixed. A key advantage of designing a solver with separate analyze and
factorize phases is that, if the pivot sequence is chosen using only the sparsity
pattern, this will not have to be repeated. Furthermore, when many problems
of a similar type need to be solved, it may be worthwhile to invest time in trying
out different pivoting strategies and selecting the best.

A recent development has been to offer the option of using the numerical val-
ues of the entries of A when selecting the pivot sequence. This can be very help-
ful when solving some highly indefinite systems. A numerical analyze phase is
offered by MUMPS, PARDISO, and WSMP.

5.2 Factorization Algorithms

Following the selection of the pivot sequence and the symbolic factorization, the
numerical factorization can be performed in many different ways, depending on
the order in which matrix entries are accessed and/or updated. Possible variants
include left-looking, right-looking, frontal, and multifrontal algorithms. Most
solver packages offer just one algorithm. The software developer will have his
or her own reasons for choosing which method to implement (based on their
own experiences, ease of coding, research interests, applications, and so on). In
our tests on large problems that were taken from a range of applications, we did
not find one method to be consistently better than the others. Oblio is still being
actively developed as experimental tool with the goal of creating a “laboratory
for quickly prototyping new algorithmic innovations, and to provide efficient
software on serial and parallel platforms.” Its object-oriented design includes
implementations of left-looking, right-looking, and multifrontal algorithms. For
2-dimensional problems the authors recommend the multifrontal option, but for
large 3-dimensional problems they report that the multifrontal factorization
can be outperformed by the other two algorithms. TAUCS, which is also still
under development, is designed to provide a library of fundamental algorithms
and services, and to facilitate the maintenance and distribution of the resulting
research codes. It includes both a multifrontal algorithm and a left-looking
algorithm.

5.3 Out-of-Core Options

Even with good orderings, to solve very large problems using a serial direct
solver it is usually necessary to work out of core. By holding the matrix and/or
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its factor in files, the amount of main memory required by the solver can be
substantially reduced. Only a small number of direct solvers currently available
include options for working out of core. BCSLIB-EXT, MA55, MA62, Oblio, and TAUCS
allow the matrix factor to be held out of core. Oblio also allows the stack used
in the multifrontal algorithm to be held in a file. As already noted, BCSLIB-EXT,
MA55, and MA62 have reverse communication interfaces and so do not require the
matrix data to be held in main memory, reducing main memory requirements
further. The most flexible package is BCSLIB-EXT. It offers the option of holding
the matrix data and/or the stack in direct access files and, if a front is too large
to reside in memory, it is temporarily held in a direct access file. In addition,
information from the ordering and analyze phases may be held in sequential
access files.

In the future, as the size of problems that users want to be able to solve con-
tinues to grow, the need for solvers that offer out-of-core facilities is also likely
to grow. Of course, there are penalties for working out of core. The software is
necessarily more complex and the I/O overheads lead to slower factorize and
solve times (for a single or small number of right-hand sides, the I/O overhead
for the solve phase is particularly significant). Important challenges for the soft-
ware developer are minimizing the additional costs and ensuring that the user
interface does not become over-complicated because of the out-of-core options.

A useful option that out-of-core solvers should provide users with is a restart
facility, that is, a means of returning later either to perform further factoriza-
tions of matrices having the same sparsity pattern as one that has already
been analaysed or to perform further solves using the computed factors. The
documentation should provide clear instructions as to how to do this.

5.4 Solve Options

An important advantage of direct methods over iterative methods is that, once
the factors have been computed, they can be used to solve repeatedly for differ-
ent right-hand sides. They can also be used to solve for more than one right-
hand side at once. In this case, the software can be written to exploit Level
3 BLAS in the solve phase. If properly tuned Level 3 BLAS is used, solving
for k right-hand sides simultaneously is significantly faster than solving for a
single right-hand side k times. Most modern direct solvers allow the solution
of multiple right-hand sides.

Sometimes a user will not want to perform a complete solve but may wish,
for example, to perform only the forward elimination or back substitution op-
erations. MA57 is an example of a solver that includes options for this.

5.5 Control Parameters

As the name suggests, control parameters are parameters that may be selected
by the user to control the action. Some solvers offer the user a large degree of
control (for example, BCSEXT-LIB, MA57, and UMFPACK), while others (including
SPRSBLKLLT) leave few decisions open to the user. Clearly, a balance has to be
achieved between flexibility and simplicity and this will, in part, depend on the
target user groups.
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Although the user can set the control parameters, defaults (or at least, recom-
mended) values need to be chosen by the software developer. These are selected
on the basis of numerical experimentation as being in some way the “best all
round” values. Getting these choices right is really important because, in our
experience, many users (in particular, those who would regard themselves as
non-experts) frequently rely on the default settings and are reluctant to try
other values (possibly because they do not feel confident about making other
choices). Thus the developer needs to experiment with as wide a range of prob-
lems as possible (different problem sizes and, for a general purpose code, differ-
ent application areas and different computing platforms). There will inevitably
be situations when the defaults may give far from optimal results and the user
will then need to try out other values. The ability to try different values can
also be invaluable to those doing research. The developer may need to change
the default settings at a later date as a result of hardware developments. We
note that an automatic optimization process that explores different parameter
settings and informs the user of the optimal values would be very useful to
ensure portability of performance across platforms and applications. The user
could run such a process once on a few typical problems and on the platform he
or she wants to work on to generate a finely tuned set of parameters specifically
targeting the user’s application and platform. This kind of approach is taken by
the ATLAS BLAS package [Whaley et al. 2001], but is yet to be found in sparse
solvers.

In addition to controlling the ordering performed and the factorization al-
gorithm used, the most often used control parameters control the following
actions:

Threshold pivoting. (solvers that are designed to handle both positive and
indefinite problems). Pivoting for stability involves using a threshold param-
eter to determine whether a pivot candidate is suitable. Small values favour
speed and sparsity of the factors but at the potential cost of instability. The
default value for the threshold is not the same for all solvers but is usually 0.1
or 0.01. It is important to be able to control this parameter since in some opti-
mization applications, for example, very small values are used to ensure speed
(and iterative refinement is relied upon to recover accuracy). If pivoting is not
required (because the user knows the problem is positive definite), setting the
threshold to 0 normally means no pivoting is performed and a logically simpler
path through the code is followed (which should reduce the execution time).

Pivoting strategy. This is currently an active area of research and recent ver-
sions of some of the solvers are now offering a number of pivoting strategies.
This is discussed further in Section 6.3. A number of codes (including the HSL
codes) allow the user to specify the minimum acceptable pivot size. If perturba-
tions of pivots that are unacceptably small is offered, some solvers (for instance,
PARDISO) give the user control over the the size of the perturbations.

Iterative refinement. It is helpful to offer the user facilities for automatically
performing iterative refinement and for computing the norm of the (scaled)
residual. A number of solvers, including MA57, MUMPS, Oblio, PARDISO, UMFPACK,
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and WSMP, do offer this. A control parameter is used to specify the maximum
number of steps of iterative refinement. In addition, MUMPS has a parameter that
allows the user to specify the required accuracy while MA57 has a parameter for
monitoring the speed of the convergence of iterative refinement: if convergence
is unacceptably slow, the refinement process is terminated. WSMP allows the
user to request that iterative refinement be performed in quadruple precision.
PARDISO automatically performs a step of iterative refinement if pivots have
been perturbed during the factorization to maintain stability.

Scaling. Poorly scaled problems can benefit from being scaling prior to the
numerical factorization. MA57, MUMPS, UMFPACK, and WSMP offer scaling (there are
also separate HSL codes that can also be used to prescale a problem).

Condition number estimation. This involves additional work but is useful as
a measure of the reliability of the computed solution. It is currently offered by
a number of solvers, including CHOLMOD, MA57, UMFPACK, and WSMP.

Diagnostic printing. The user needs to be able to control the unit number(s)
on which printing is performed as well as the amount of diagnostic printing.
When a solver is incorporated within another package, it is important to be
able to suppress all printing, while for debugging purposes, it can be useful
to be able to print all information on input and output parameters. Thus it is
common practice to offer different levels of printing and allow the user to choose
different output units for errors, for warnings, for diagnostic printing and the
printing of statistics. Examples of packages with a range of printing options are
MA57 and MUMPS. UMFPACK uses a different approach: its main routines perform
no printing but nine separate routines are available that can be used to print
input and output parameters.

Blocking. As already noted, modern direct solvers generally rely on exten-
sive use of high level BLAS routines for efficiency. Since different block sizes
are optimal on different computer architectures, the block size should be avail-
able for the user to tune. Codes with a block parameter include BCSLIB-EXT,
MA57, MA62, MA67, and UMFPACK (the default is not the same for each of these
solvers).

A simple and, in our experience, convenient way to organize the control pa-
rameters is to hold them using either a single array or two arrays (one for
integer controls and one for real controls), or possibly three arrays (the third
array being a logical array since often a number of the controls can only be either
“on” or “off”). A number of solvers (including BCSLIB-EXT, the HSL codes and
MUMPS) provide an initialization routine that needs to be called to assign default
values to the control arrays. If other values are wanted, the relevant individual
entries of the control arrays can be reset by the user after the initialization and
prior to calling other subroutines in the package. For BCSLIB-EXT, the user has
to call a separate subroutine to reset one control parameter at a time. This can
be cumbersome if several controls need to be reset. Other solvers simply require
the user to overwrite the default, and we found this easier to use. PARDISO and
WSMP do not have an initialization routine but use the first entry in an integer
array IPARM to indicate whether the user wants to use defaults. If IPARM(1) is
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set to 0, defaults are used, otherwise all the control integer parameters must
be set by the user. We found that this is not very convenient if, for example,
only one control that differs from the default is wanted. If a fixed length array is
used for the controls, we recommend the software developer allows some extra
space for controls that may be wanted in the future. The software should always
check that the user-supplied controls are feasible; if one is not, we suggest a
warning is raised and the default value is used.

An alternative is to use a derived type whose components are control vari-
ables. As mentioned earlier, this can be more user-friendly as it allows mean-
ingful names to be used for the controls. It is also more flexible as additional
controls can be easily be added. In Fortran 95, components of a derived type can
be initialized on declaration, which removes the need to call an initialization
routine. Another possible way of setting controls is through the use of optional
arguments. UMFPACK uses an optional array. If the user passes a NULL pointer,
the default settings are used.

Finally, we note that it is important that the user documentation clearly
explains the control parameters (possibly with suitable references to the litera-
ture). However, as they are primarily intended for tuning and experimentation
by experts, they should not complicate the documentation for the novice user.
A user also needs to know the range of values that are possible and what, in
broad terms, the effect of resetting a parameter is likely to be. If a parameter
is important enough for the software developer to want the user to really con-
sider what value to use (which may be the case if, for instance, the best value
is too problem dependent for the writer to choose a default), then that param-
eter should not be a control but should be passed to the routine as a regular
argument. An example might be the use of scaling. Our experience has been
that the benefits of different scaling strategies are highly problem dependent
and so we feel a user should really be aware of what scaling, if any, is being
performed.

6. WHAT IF THINGS GO WRONG?

An important consideration when developing any software package designed for
use as a “black box” routine is the handling of errors. One of the main attractions
of direct methods that is often cited is their robustness. However, the software
developers should always have in mind what can go wrong and, for the solver
to be both user friendly and robust, it must be designed to “fail gracefully” in
the event of an error. In other words, the package should not crash when, for
example, a user-supplied parameter is out-of-range or the available memory
is insufficient; instead, it should either continue after issuing a warning and
taking appropriate corrective action or stop with an error returned to the user.
In both cases, the user needs to be given sufficient details to understand what
has gone wrong, together with advice on how to avoid the error in a future
run. Because sparse solvers are often embedded in application software, such
information should be returned using error flags and there should be a way to
suppress any warning and error messages. Most of the solvers we tested fulfil
this requirement.
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The main potential sources of problems and errors for sparse direct solvers
can be categorized as follows:

(1) the user-supplied data,

(2) memory problems,

(3) pivoting difficulties,

(4) in addition, if a code offers an option for working out of core, this can po-
tentially lead to problems.

We discuss each of these in turn.

6.1 Input Data Problems

One of the most likely causes of the solver failing is an error in the user-
supplied data. In Section 4, we discussed the input data. Even experienced
users may make an error setting up this data. A parameter may be out-of-
range, or, when using a package such as OBLIO, PARDISO, SPOOLES, or WSMP
that requires the sparsity pattern of the input matrix to include the diag-
onal, the user may fail to explicitly supply zero diagonal entries. The more
complicated the user interface is, the more necessary it is for the package to
perform comprehensive testing of the input. Checking scalar parameters is
quick and easy to do. Checking arrays, such as the index arrays that define the
sparsity pattern, is more time consuming and the software developer needs to
ensure it is done as efficiently as possible so that it represents only a small
fraction of the total runtime. Efficiency of the data checking is particularly im-
portant for smaller problems for which error checking can add a significant
overhead.

The “user” of the solver may be another package that has already checked
the matrix data, in which case checking of the input data may be unnecessary.
Similarly, when solving a sequence of problems in which the numerical values
of the entries of A change but the sparsity pattern does not, checking may be
redundant after the first problem. Thus, for some users it may be useful to
include an option that allows checking of the input data to be switched off. Of
course, if checking is switched off and there is an error in the user’s data, the
results will be unpredictable so we would recommend that the default be always
to perform error checking.

Some software developers have decided not to offer comprehensive checking
of the user data. For example, the documentation for WSMP states that it performs
“minimal input argument error-checking and it is the user’s responsibility to
call WSMP subroutines with correct arguments. . . In the case of an invalid input,
it is not uncommon for a routine to hang or to crash with a segmentation fault.”
At least the documentation is clear that no responsibility is taken for checking
of the user’s data; the documentation for other codes is often less transparent.
For example, PARDISO returns an error flag of −1 if the input is “inconsistent”
but no further details are given. This does not help the user track down the
problem. Furthermore, the PARDISO documentation does not make it clear what
checking is performed. For this code, we feel that full checking should be offered
because the input required is reasonably complicated (any zero diagonal entries
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must be stored explicitly and the nonzeros within each row of A must be held
in increasing order).

A number of packages we tested (including the HSL codes and MUMPS) allow
out-of-range and/or duplicated entries to be included. Out-of-range entries are
ignored and duplicates are typically summed, which is what is needed, for
example, in finite-element problems when the element contributions have not
been summed prior to calling the solver. The user needs to be warned if entries
have either been ignored or summed since such entries may represent an error
that he or she needs to be made aware of so that the appropriate action can
be taken. A warning can be issued by setting a flag and, optionally, printing a
message. As discussed in Section 5, the printing of error and warning messages
needs to be under the user’s control.

An advantage of a reverse communication interface is that it can be designed
to allow the user to recover after an input error; that is, the user may be allowed
to reenter an element (or equation) in which an error has been encountered
without reentering the previously accepted elements (or equations).

6.2 Memory Problems

The codes that do not offer out-of-core facilities will inevitably face difficul-
ties as problem sizes are increased. For positive definite problems, the analyze
phase can accurately predict the memory requirements for the subsequent fac-
torization; both the size of the matrix factor and the required workspace can
be determined. Provided this information is returned to the user, he or she can
determine a priori whether sufficient memory is available.

Solving indefinite problems is generally significantly harder since the pivot
sequence chosen during the analyze phase based on the sparsity pattern may
be unstable when used for the numerical factorization. If pivots are delayed
because they do not satisfy the threshold test, the predictions from the analyze
phase may be inaccurate and significantly more workspace as well as more
storage for the factor may be required. For Fortran 77 packages, the memory
must be allocated by the user and passed to the package as real and integer
arrays. If the memory is insufficient, the solver will terminate (hopefully with
some advise to the user on how far the factorization has proceeded and how
much additional memory may be needed). The Fortran 77 solver MA57 optionally
allows the user to allocate larger work arrays and then restart the factoriza-
tion from the point at which it terminated. We found this less convenient than
working with a solver that can automatically allocate and deallocate memory
as required (especially since once larger arrays have been chosen, there is still
no guarantee that they will be large enough and the process may need to be
repeated); it also complicates the documentation.

The use of dynamic memory allocation does come with a memory-
management issue: the developer must provide the means for all temporary
storage that has been allocated by the solver to be released when the compu-
tation terminates. In particular, if the solver fails before the solution process
is complete, the developer must ensure that all temporary storage is released.
This can be difficult, especially if there are many possible return paths back to
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the user’s calling program. For storage that cannot be released until the user
has finished with the solution process, a straightforward method of deallocat-
ing the storage must be included within the package to ensure the solver is
completely free of side effects. Out-of-core solvers must also provide a means
of releasing file storage once it is no longer required. A very common usage of
a sparse solver is in the inner loop of an iterative process, such as in solving
Jacobian linear systems in the solution of differential-algebraic equations. In
such a setting, even a small memory leak can lead to memory exhaustion over
the course of the iterative process. Storage management is a particularly acute
issue for sparse solvers because they tend to allocate many small chunks of
storage. We note that C++ and Fortran 95 offer more assistance with automatic
garbage collection than C and Fortran 90, which makes these languages more
advantageous as far as memory management is concerned.

6.3 Pivoting Problems and Singular Matrices

As already noted, for symmetric indefinite problems, using the pivot sequence
chosen by the analyze phase may be unstable or impossible because of (near)
zero diagonal pivots. A number of codes in our study (MA55, MA62, SPRSBLKLLT,
and TAUCS) do not try to deal with this, and, as they state in their documentation,
they are only intended for positive definite problems; a zero pivot will cause
them to stop. The default within WSMP is also to terminate the computation as
soon as a zero pivot (or one less than a tolerance) is encountered. The code also
offers an option to continue the computation by perturbing near zero pivots.
The data structures chosen by the analyze phase can be used but large growth
in the entries of the factors is possible. The hope is that accuracy can be restored
through the use of iterative refinement but, with no numerical pivoting, this
simple approach is only suitable for a restricted set of indefinite problems.

A larger set of problems may be solved by selecting only numerically stable
1 × 1 pivots from the diagonal, that is, a pivot on the diagonal is chosen only
if its magnitude is at least u times the largest entry in absolute value in its
column, where 0 < u ≤ 1 is the threshold parameter (see Section 5.5). Poten-
tially unstable pivots (those that do not satisfy the threshold test) will be de-
layed, and the data structures chosen during the analyze phase may have to be
modified.

To preserve symmetry and maintain stability, pivots may be generalized to
2 × 2 blocks. Again, different packages use different 2 × 2 pivoting strategies.
PARDISO looks for suitable pivots only within the dense diagonal blocks that
correspond to supernodes and, if a zero (or nearly zero) pivot occurs, it is per-
turbed. Numerical stability is not guaranteed (the hope again is that iterative
refinement, which by default is always performed by PARDISO if pivots have been
perturbed, will restore the required accuracy). The attractions of this static piv-
oting approach (a version of which is also offered by the latest version of MA57)
are that, because there is no searching or dynamic reordering during the factor-
ization, the method is fast and allows the data structures set up by the analyze
phase to be used. Thus errors resulting from of a lack of memory will not oc-
cur during the factorization and there will be no additional fill in the factors
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resulting from delayed pivots. The user should, however, be very aware of the
potential pitfalls. In particular, there is no guarantee that iterative refinement
will converge to the required accuracy and, because a perturbed system has
been solved, the user cannot be provided with inertia details for the original
system. In some applications, such as constrained optimization, this informa-
tion is important. We note that PARDISO does return the computed number of
positive and negative eigenvalues but the documentation does not clearly ex-
plain that these are for a perturbed matrix and could be very different from the
exact inertia of the input matrix.

A more stable but complicated approach for indefinite problems combining
the use of 1 × 1 and 2 × 2 pivots is implemented by default within BCSLIB-EXT,
MA27, MA47, MA57, MA67, Oblio, and the most recent versions of MUMPS and WSMP.
Each follows a slightly different strategy but they can all potentially result
in a large number of pivots being delayed, possibly leading to solver failure
because of insufficient memory (the out-of-core facilities offered by BCSLIB-EXT
mean that it does not run out of memory but the factorization time can be
unacceptably slow). This was observed during our numerical experiments for a
number of ill-conditioned indefinite problems.

Some of the problems in our test set turned out to be singular. For a user who
does not know a priori whether a problem is singular, it can be useful to offer
the option of continuing the computation after singularity has been detected. A
number of packages we tested do offer this. In particular, the HSL codes that use
1×1 and 2×2 pivoting issue a warning and continue the computation. Provided
the given system of equations is consistent, they compute a consistent solution
and provide the user with the computed rank of the matrix. An example where
this may be useful is when A has one of more rows that are completely zero
(with the corresponding entries in the right-hand sides also zero). UMFPACK also
warns the user if the matrix is found to be singular. Its documentation states
that a valid numerical factorization has been computed but a divide by zero
will occur if the solve phase is called. Other codes, such as BCSLIB-EXT, MUMPS,
and WSMP, terminate with an error once singularity is detected.

6.4 Out-of-Core Problems

Working out of core has the potential to lead to errors that can be difficult for
the user to overcome. If the code chooses (as MA55 does) the unit numbers for
reading and writing files, it will fail if no available unit can be found. The code
will also fail if it runs out of disk space. So that the user can take advantage of
any large amounts of disk space, MA62 and TAUCS both allow the user to specify
where the files will be written, which does not have to be where the executable
is located. Unfortunately, out-of-core solvers can still run out of main memory.
TAUCS, for example, holds the matrix factor out of core but holds supernodes in
main memory. For large indefinite problems, there may be no suitable pivots
available in the part of the reduced matrix that fits into main memory and so
the solver will fail because of insufficient memory.

Out-of-core solvers must ensure that all temporary file storage is released
when no longer being used. If the factors are held in files, it is useful to offer
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a restart facility, that is, a means of returning later to perform further solves
using the computed factors.

7. INSTALLATION

It is important that software developers consider how best to advise and help
users install their software. This will, in part, depend upon the language that
the software is written in since different languages have different requirements.
As already noted, many packages are provided as source code. This has the
advantage that, provided the software developer has ensured the code is fully
portable, users can put the software onto any machine that has an appropriate
compiler and they are then in control of the compilation process. The downside
is extra effort is needed by the user, who will often not be a systems expert. In
the user documentation, it is important to make the need for external codes and
libraries (such as routines from the BLAS and LAPACK libraries, and ordering
algorithms such as METIS) completely transparent, without assuming the user
has previous knowledge or experience of these libraries. Performance (speed)
will typically be critically influenced by the use of appropriately tuned BLAS so
the user needs to be made fully aware of this and instructed on how to obtain
fast BLAS for his or her computer and, most importantly, how to then link these
with the solver. Pointers from the solver’s Web page to sites where fast BLAS
and, where necessary, LAPACK are available, are useful (provided, of course,
these are kept up-to-date). The Web pages for CHOLMOD, PARDISO, and UMFPACK
are examples where this is done well (for MUMPS, details on obtaining BLAS are
rather hidden away in the FAQ section).

Many of the solver packages involve a large number of source files. In this
case, providing a makefile or configuration script is extremely helpful. Other
key functions a makefile can perform include : (1) building multiple versions of a
solver (real/complex/single/double) from a single source, (2) linking in external
libraries, (3) resolving the form of symbols for external libraries (for example,
the Level 3 BLAS kernel for matrix-matrix multiply may be called DGEMM or
DGEMM when called from C). Some packages, including the C codes CHOLMOD,
TAUCS, and UMFPACK, use a single source and rely on a makefile to generate
separate source codes and object files for the different types and precisions
on the fly. The advantage of a single source file is that there are fewer codes
to maintain and the different versions cannot become out-of-phase, which is
a danger when several versions are held separately. Note that codes written
in C++ can the utilize built-in language support through templates, making it
unnecessary to rely on preprocessing through a makefile.

Any makefile that the developer provides must be really carefully designed
and fully commented so that it is straightforward for the installer to modify for
a range of different computing platforms and compilers. CHOLMOD, MUMPS, Oblio,
SPOOLES, TAUCS, and UMFPACK are examples of packages that include sample
makefiles. We found that the build process for CHOLMOD and UMFPACK was partic-
ularly painless (only one file required editing to indicate where the appropriate
BLAS and LAPACK libraries are located). MUMPS provides a number of sam-
ple makefiles for different architectures. The user must choose an appropriate
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one to edit; comments within the makefiles assist with this (the user must, for
example, set the compiler and its flags and indicate where external libraries
are). Although the user guide provides few details of how to build the MUMPS
library, a helpful “readme” file is included within the MUMPS distribution.

HSL provides source code but does not currently provide makefiles for indi-
vidual packages within the Library (although documentation and instructions
are provided for those who wish to install the complete Library). For the indi-
vidual solvers, the source code for each version (real/complex/single/double) is
held in a single file, with the source code for any other HSL routines that are
needed by that version held in another file. By limiting the number of source
files, it is relatively straightforward for the user to compile and link the codes,
but it would perhaps be more user-friendly to include at least a simple sample
makefile.

We end this section by noting that, having edited or written suitable make-
files for each of the solvers in our experiments that were supplied as source, our
experiences of actually compiling the codes in our study were mixed. Ideally,
a developer should test his or her software thoroughly on a range of platforms
using a range of compilers, and should ensure that no compiler warnings or er-
rors are issued. We found that some codes, including those from CHOLMOD, HSL,
MUMPS, and UMFPACK, gave no problems. However, the build process for TAUCS pro-
duced a large number of compiler warning messages. In our opinion, this can
be off-putting for users, who may be concerned that they have made an error
in trying to build the library, and it is very easy to make simple changes to the
code to eliminate many of these warnings (for example, the warnings relating to
unused variables). Using the makefile provided with SPOOLES did not succeed on
the first attempt because some parts of the code did not get compiled. We found
it was necessary to go into a subdirectory and execute make there, then return to
the top directory and complete the make process. We recognize that it is not al-
ways possible to avoid warning messages entirely for all platforms, particularly
if the developer has limited access to different platforms and compilers (and, of
course, new platforms and compilers are constantly becoming available). Fur-
thermore, academic developers, sometimes aided by graduate students, do not
necessarily have the motivation, time, or resources to guarantee fine software
engineering. Nevertheless, it is a good practice to pay attention to these issues.
We recommend developers consider using software engineering tools that can
greatly assist with efficient “code polishing” and, more importantly, use com-
plier options to test their code for language compliance. Another possibility
to try and ensure users do not experience error and warning messages when
installing a package is to make a prerelease version of both the software and
documentation available and to invite construction feedback on it.

8. FEATURES OF AN IDEAL SOLVER

Having surveyed and used a wide range of sparse direct solvers, we end our
study by summarizing what we believe a sparse direct solver software package
should offer its users. It is important to design a sparse solver software to be
easy to use and robust. Often it is better to assume that the user is not an
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expert in sparse linear solver algorithms, but someone who has a problem to
solve and wishes to solve it accurately and efficiently with minimal effort. After
all, even experienced users were once novices and a user’s initial experiences of
using a solver are likely to determine whether he or she goes on to become an
expert user. Based on our experiences of benchmarking sparse direct solvers,
in addition to the requirements of good performance (in terms of memory and
speed) and the availability of comprehensive well-written documentation, in
our opinion the following features characterize an ideal sparse direct solver.

—Simplicity. The interface should be simple and enable the user to be shielded
from algorithmic details. The code should be easy to build and install, with
no compiler warning messages. During the building of the software from sup-
plied source, minimum effort and intervention by the user should be required.
If permitted by the language, dynamic memory allocation should be used so
that the user need not preallocate memory. In fact, the software developer
needs very good reasons for not selecting a language that includes dynamic
memory allocation. The software developer should consider providing inter-
faces to popular high-level programming environments, such as MATLAB,
Mathematica, and Maple.

—Clarity. Unless there are important reasons for selecting the pivot sequence
using numerical values, there should, in general, be a clear distinction be-
tween the symbolic factorization and the numerical factorization phases, so
as to facilitate the reuse of the symbolic factorization. Furthermore, to allow
repeated solves and iterative refinement there should be a clear distinction
between the numerical factorization and solve phases. In some applications,
separate access to the forward eliminations and backward substitutions are
useful. However, some users require (as in MATLAB) one call to a single
routine for the whole solution process. Developers should consider offering
such an interface as well as an interface with the greater flexibility of access
to the different phases.

—Smartness. Good choices for the default parameters and of the algorithms
to be used should be automatically made without the user having to un-
derstand the algorithms and to read a large amount of detailed technical
documentation. There should be an option to check the user-supplied input
data, particularly for any assumptions that the code relies on, and to convert,
when possible, to a suitable form when the assumptions are violated.

—Flexibility. For more experienced users and those with specific applications
in mind, the solver should offer a wide range of options, including different
orderings, control over pivoting, and solving for multiple right-hand sides.
There should also be options for the user to specify the information that
he or she requires (including the matrix inertia and level of accuracy). The
software should handle both real and complex systems (complex symmetric
and Hermitian) and support 64-bit architectures.

—Persistence. The solver should be able to recover from failure. For example, if
it is found that there is not enough memory, a code that contains both in-core
and out-of-core algorithms should automatically switch to out-of-core mode.

ACM Transactions on Mathematical Software, Vol. 33, No. 3, Article 18, Publication date: August 2007.



26 • J. A. Scott and A. Hu

Reverse communication should be designed to allow corrections to the input
data.

—Robustness. Iterative refinement should be automatically used when neces-
sary. Estimates of growth in the factor entries should be provided along with
residuals and condition number estimates.

—Safety. The code should be threadsafe to enable the user to safely run multiple
instances of the package simultaneously in different threads or on different
processors. The code should not have any side effects, including no memory
leaks, so that when it is employed repeatedly, the memory used remains
constant.

9. CONCLUDING REMARKS

None of the solvers we tested meets all our criteria for an ideal solver, but it
should be clear from our discussions that some of today’s state-of-the-art solvers
come closer to meeting the ideal than others. As anyone who has ever tried will
attest, writing a sparse direct solver is not easy. Although high-quality direct
solvers have been available for three decades, the development of sparse direct
solvers remains a highly active area. New serial and parallel codes are currently
being developed, and new versions of existing packages are regularly released.
Many of these start as research projects and the early versions of a solver may
be little more than prototypes but they may nevertheless be very important
and useful for the research community. A major goal for any new package is
clearly improved efficiency, in terms of either CPU time and/or storage. How-
ever, in this article, we have attempted to emphasize that, if the developer
intends that his or her code should be used by nonexpert users coming from
a whole range of backgrounds, then many more factors have to be considered
in order to produce a good package: issues such as the user interface, robust-
ness, reliability, and flexibility have to be carefully addressed, and considerable
time and effort must be invested in the writing of high quality user-friendly
documentation.

Finally, we remark that a grid-based service for comparing sparse direct
solvers could be extremely useful for both potential users and software devel-
opers. Such a service would allow a user to compare different solvers, using
problems he or she has supplied or those in the service database. Once a user
has seen how the codes perform, an appropriate solver can be chosen and time
then invested in installing it, learning how to use it, integrating it into pack-
ages, and so on. Furthermore, a grid-base service would enable software devel-
opers to extensively test the performance of new algorithmic improvements and
to compare them with the best codes currently available. We are encouraged
that a grid-based service GRID-TLSE is currently being developed in Toulouse,
France. Details are available at www.enseeiht.fr/lima/tlse/
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